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Abstract

We show that the Jacobi model for the famous Poncelet theorem in projective
geometry is equivalent to Hirota’s model of the discrete-time mathematical
pendulum. We describe all types of solutions of Hirota’s pendulum from
a geometrical point of view. Apart from ‘classical’ pendulum solutions
there are solutions with no continuous limit. These solutions have a very
natural geometric treatment. The main result of the paper is that the generic
fourth-order anharmonic oscillator admits direct time discretization preserving
integrability. Equivalently, this means that there exists an integrable system on
the unit circle which admits direct time discretization. This observation gives
rise to a notion of the ‘Maxwell caustic’ corresponding to all systems of such
type. Relations with spin chains and other problems in mathematical physics
are considered.

PACS number: 02.30.Ik
Mathematics Subject Classification: 70H06

1. Jacobi model of the Poncelet theorem

The Poncelet theorem in elementary projective geometry is a statement about some recursive
process on two arbitrary conics C and D in a projective plane [4]. Assume that conic C is
located inside conic D. Choose an arbitrary point A0 on D and pass the tangent line from A0

to C (we choose one of two possible tangent lines). This tangent line intersects conic D in a
new point A1. Then, starting from A1, we can continue this process passing a new tangent
line from A1 to conic C, obtaining a new point A2 on D, etc. We then obtain a sequence
An, n = 0, 1, 2, . . . , of points on conic D. The Poncelet theorem states that if the process is
periodic, i.e. AN = A0 for some N � 3, then this property does not depend on the choice of
the initial point A0. In other words, the periodicity property (with the same N) will take place
for any initial point A0 on conic D.
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http://dx.doi.org/10.1088/1751-8113/42/17/175206
mailto:luc.vinet@umontreal.ca
mailto:zhedanov@kinetic.ac.donetsk.ua
http://stacks.iop.org/JPhysA/42/175206


J. Phys. A: Math. Theor. 42 (2009) 175206 L Vinet and A Zhedanov

Recently, it has been shown [7] that the Poncelet theorem plays an important role in the
analysis of the Dirichlet problem for the string equation.

There are many different proofs of the Poncelet theorem (see, e.g., [4]). In our paper
we will analyze only one of them belonging to Jacobi [17]. In what follows, we will use a
‘modernized’ version of the Jacobi approach contained in [6].

Jacobi used the property (already established by Poncelet himself) that the Poncelet
theorem is projective invariant, so it is possible to choose an appropriate projective
transformation in order to reduce the two conics to the simplest possible ones. There are
different possibilities of how to do this. Jacobi chose the following one: both C and D are
circles; D is a circle of radius R with the equation x2 + y2 = R2, and C is a circle of a smaller
radius r < R located inside D with the equation x2 + (y −a)2 = r2. Thus the centers of circles
D and C have coordinates (0, 0) and (0, a), respectively. The parameter a is the distance
between the centers of the two circles D and C.

We can parametrize points on circle D by an angle θ counted anti-clockwise from the
‘bottom’ point (0,−R). Choose the starting point A0 with the coordinate θ0 and pass the
tangent line (A0, A1) to circle C such that circle C will be to the left side with respect to
the line (A0, A1). This means that the parameter θ1 (corresponding to the point A1) has
restrictions: 0 < θ1 − θ0 < π . We then repeat the process obtaining points with coordinates
θ2, θ3, . . . , θn. The Poncelet process will be periodic if θN = θ0 for some N � 4.

Jacobi noticed the remarkable relation

R cos

(
θn+1 − θn

2

)
+ a cos

(
θn+1 + θn

2

)
= r, (1.1)

which is valid for all n = 1, 2, . . . . This relation follows easily from elementary geometric
considerations. On the other hand, this relation can be considered as an ‘integral’ for the
second-order nonlinear equation

(R − a) tan

(
θn+1 + θn−1

4

)
= (R + a) tan

(
θn

2

)
, n = 2, 3, . . . (1.2)

or in equivalent form

R sin

(
θn+1 + θn−1 − 2θn

4

)
= −a sin

(
θn+1 + θn−1 + 2θn

4

)
. (1.3)

Recall the notion of the ‘integral’ of the second-order nonlinear difference equation [10, 32, 33].
Let f (x, y, z) be a function of three complex variables. We assume that this function possesses
‘sufficiently good’ analytical properties. Let xn, n = 0,±1,±2, . . . , be a complex sequence.
The equation,

f (xn, xn−1, xn+1) = 0, n = 0,±1,±2, . . . , (1.4)

can be considered as a second-order nonlinear difference equation with respect to the discrete
variable xn. We say that this equation possesses an integral, if there exists an analytic function
F(x, y) such that F(xn, xn+1) = const for any given solution xn of equation (1.4). Existence
of the integral means that in the phase space x = xn, y = xn+1 all solutions of equation (1.4)
belong to a family of curves F(x, y) = C, where the value of the constant C depends on the
choice of initial conditions, say x0, x1. In general, for arbitrary algebraic functions f (x, y, z),
equation (1.4) is non-integrable (i.e., there is no analytical function F(x, y) with the property
F(xn, xn+1) = const). Existence of an integral F(x, y) is the exception rather than a rule
[32, 33].

Strictly speaking, equations (1.2) and (1.3) follow directly from relation (1.1) under
additional restriction:

sin

(
θn+1 − θn−1

4

)
�= 0. (1.5)
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But it is easily seen that in Jacobi’s geometric construction (if r > 0) of the points An on
circle D there are obvious restrictions θn+1 > θn and θn+1 − θn−1 < 2π . Indeed, the condition
θn+1 = θn−1 can be valid only if r = 0. But the case r = 0 is degenerated: it corresponds to
solutions consisting only of two points on circle D: θ2n+1 = θ1, θ2n = θ2. Thus for the Jacobi
model condition (1.5) always holds.

Now we can present an explicit solution for the Poncelet process in the form (in [6],
the solution is presented in an equivalent form through the Jacobi ‘amplitude’ function,
2θn = am(qn + φ))

cos(θn/2) = cn(qn + φ; k), sin(θn/2) = sn(qn + φ; k), (1.6)

where cn(z; k) and sn(z; k) are standard Jacobi elliptic functions (we use definition of [34]).
It is elementary verified [6] that the parameters of elliptic functions are

k2 = 4aR

(R + a)2 − r2
, cn(q; k) = r

R + a
, dn(q; k) = R − a

R + a
. (1.7)

The parameter φ remains free; it describes the location of the initial point θ1 on circle D.
Jacobi also noticed an important property of this Poncelet model. Construct a linear

pencil D + λC of circles depending on a parameter λ. More exactly, this means that we
consider a family of circles C(λ) describing by the equation

x2 + y2 − R2 + λ(x2 + (y − a)2 − r2) = 0. (1.8)

For λ = 0, we have circle D, for λ = ∞ one obtains circle C. For any nonzero positive value
of the parameter λ we have a circle C(λ) which lies between the circles C and D. One can say
that the family C(λ), λ > 0 provides a linear interpolation between the circles D and C. An
equation for circle C(λ) can be presented in the form

x2 + (y − a(λ))2 = r2(λ), (1.9)

where

a(λ) = aλ

λ + 1
, r2(λ) = (λ + 1)(R2 + λr2) − λa2

(λ + 1)2
. (1.10)

Consider now the Poncelet process for the circles D and C(λ). From formulae (1.7) and (1.10)
it is seen that k2(λ) = k2, i.e. the elliptic modulus does not depend on the parameter λ. The
parameter q(λ) will depend on λ:

dn(q(λ); k) = (R − a)λ + R

(R + a)λ + R
.

We see, that q(λ) → 0 when λ → 0, i.e. the ‘step’ q of the linear grid qn + φ becomes small
for small λ. Geometrically, this is obvious: when λ → 0 circle C(λ) becomes very close
to circle D. Hence all the next points A1, A2, . . . of the Poncelet process will be close to the
initial point A0.

Thus, changing the parameter λ in the linear pencil C(λ) we can vary the step q of the
Poncelet process while the elliptic modulus k will be an invariant for the whole family C(λ).

Find the periodicity condition for solution (1.6). Elliptic functions sn(x; k) and cn(x; k)

have real half-period 2K(k), where K(k) is the complete elliptic integral of the first kind:
sn(x + 2K; k) = −sn(x; k), cn(x + 2K; k) = −cn(x; k). Assuming that qN = 2K(k)M

for some positive integers N,M < N we have cos(θN/2) = (−1)M cos(θ0/2), sin(θN/2) =
(−1)M sin(θ0/2). This means that θN = θ0 + 2πj with some integer j , whence angles θN and
θ0 describe the same position of the point on the circle and AN = A0. Thus the periodicity
condition is

qN = 2K(k)M. (1.11)

It is seen that the periodicity condition does not depend on φ; hence it does not depend on the
choice of the initial point A0.
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2. The Jacobi model and Hirota’s discrete-time pendulum

In 1982 R Hirota proposed [13] his model of a simple pendulum with discrete time. This
model is remarkable, because it preserves all essential features of the ordinary (continuous
time) model of a simple pendulum. We will follow the paper [21] where this Hirota model is
described.

Recall that the ordinary simple pendulum is described by the Newton equation

d2θ

dt2
= −ω2 sin θ, (2.1)

where θ is the angle of pendulum with respect to the vertical line (θ = 0 is the stability
position of the pendulum), ω = (g/l)1/2, where l is the length of the mathematical pendulum,
and g is the strength of the gravity field. The parameter ω is the angular frequency of small
oscillations of the pendulum, i.e. for sufficiently small values of θ one has the solution

θ(t) = C cos(ωt + φ), (2.2)

with C being an amplitude and φ a phase of the solution.
The total mechanical energy of the system,

E = l2 θ̇2/2 + lg(1 − cos θ), (2.3)

is an integral of the motion.
Harmonic solution (2.2) is valid only for small values of energy E � lg. For arbitrary

values of E one has solutions in terms of elliptic functions.
If E < 2lg, then the solution is oscillator-like:

sin(θ/2) = k sn(ωt + φ; k), cos(θ/2) = dn(ωt + φ; k), (2.4)

where ω2 = g/l, k2 = E/(2lg).
If E > 2lg, then we have the ‘rotating’ solution:

cos(θ/2) = cn(ωt + φ; k), sin(θ/2) = sn(ωt + φ; k), (2.5)

where k2 = 2lg/E,ω2 = E/(2l2).

If E = 2lg, then the solution will be

sin(θ/2) = 1/ cosh(ωt + φ), cos(θ/2) = tanh(ωt + φ), (2.6)

where ω2 = g/l.
The parameter φ is arbitrary. It corresponds to the initial conditions of the pendulum.
In Hirota’s model, equation of motion (2.1) is replaced by its discretized version:

sin

(
θ(t + 2δ) + θ(t − 2δ) − 2θ(t)

4

)
= −ω2δ2 sin

(
θ(t + 2δ) + θ(t − 2δ) + 2θ(t)

4

)
, (2.7)

where δ is a parameter which defines a step of time discretization. When δ → 0 equation
(2.7) returns to (2.1). Hirota showed [13, 21] that the discrete-time model (2.7) preserves all
features of the simple pendulum: it admits an ‘energy’ integral

E = 2

δ2
sin2

(
θ(t + δ) − θ(t − δ)

4

)
+ ω2

(
1 − cos

(
θ(t + δ) + θ(t − δ)

2

))
, (2.8)

and there exist solutions of all three types corresponding to the solutions of the simple pendulum
for different values of the energy E.

Now we identify the Hirota pendulum with the Jacobi model. For this goal we need only
to denote

θ(t + 2δn) = θn
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for all n = 0, 1, . . . . The Hirota equation (2.7) becomes the Jacobi equation (1.3) with
a/R = ω2δ2. The ‘energy’ integral (2.7) coincides with the Jacobi integral with (say)
R = 1/δ2, a = ω2, E = R + a − r .

Now we can consider a geometrical meaning of all possible solutions of Hirota’s-Jacobi
model.

The case r < R, a < R − r corresponds to the Jacobi model when the inner circle with
radius r is contained completely in the outer circle with radius R. In this case we have solution
(1.6) corresponding to the ‘rotating’ solution (2.5) of the simple pendulum. Note that if a → 0
then k → 0 (as seen from (1.7)) and we have simple harmonic rotation θn = nq + φ with
cos q = r/R. The physical meaning of this motion is obvious: remember that a = ω2. On
the other hand ω2 = g/l. Thus a → 0 means g → 0, i.e. the case when gravity is neglectible,
and the motion in this case is a free rotation with constant angular velocity. On the other side,
the case a = 0 corresponds to two concentric circles. The discrete trajectory θ0, θ1, . . . , in the
Poncelet model is a sequence of rotations to the same angle. In the periodic case, this means
that we have a regular N-gon inscribed in circle D.

Now consider the process when the inner circle C moves toward the boundary of circle
D. The modulus k will tend to 1. In the limiting case a = R − r we have that the inner circle
has a tangent point θ = π with outer circle D. In this case, solution (1.6) is degenerated to

cos(θn/2) = 1/ cosh(qn + φ), sin(θn/2) = tanh(qn + φ), (2.9)

where cosh q = (2R − r)/r . This solutions corresponds to solution (2.6) of the simple
pendulum. From the geometrical point of view, this solution corresponds to a sequence of
angles θn which have limiting point θ∞ = π (‘highest’ position of the pendulum).

If we continue to move circle C upward, such that a > R − r but a < R + r, then circle
D will have two symmetric intersection points with circle C with angle coordinates −ψ,ψ ,
where

cos ψ = r2 − a2 − R2

2aR
. (2.10)

From formula (1.7) it follows that in this case k > 1. Using standard transformation formulae
for elliptic functions (see, e.g., [34]) we can reduce this case to the ‘usual’ interval 0 < k < 1
obtaining then the solution

sin(θn/2) = k sn(qn + φ; k), cos(θn/2) = dn(qn + φ; k), (2.11)

where

k2 = (R + a)2 − r2

4aR
, dn(q; k) = r/(R + a). (2.12)

This solution of the Jacobi model (or Hirota pendulum) corresponds to the oscillating
solution (2.4) of the simple pendulum. Note that the solution is restricted in the region
−ψ � θ � ψ as obvious from the geometrical point of view.

Consider now the case of small (harmonic) oscillations from the geometrical point of
view. From formula (2.10) it is seen that ψ > π/2 if r < R. This means that the amplitude of
the oscillations will be sufficiently large (more than π/2) and we will not achieve a harmonic
regime in this situation. Hence, we need to consider the case r > R. As is easily seen from
geometric considerations it is sufficient to choose arbitrary radius r such that r > R and the
parameter a which should be a = r −R +ε, where ε � r −R. Then admissible zone on circle
D is located near the bottom point θ = 0 and the amplitude ψ2 = 2ε r

R(r−R)
(up to terms of

order of ε2). In this situation, we can replace sin(θn) or tan(θn) with θn. Then equation (1.2)
becomes

θn+1 + θn−1 = 2(2R − r)/r θn. (2.13)

5
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This is a linear second-degree difference equation with general solution

θn = C cos(qn + φ), (2.14)

where

cos(q) = (2R − r)/r.

This result can also be obtained directly from the ‘oscillating’ solution (2.11) because in this
case k → 0 as is seen from (2.12).

Note that the Jacobi model has one more type of solutions which has no analogs in the
continuum limit. This type corresponds to the case when circle C lies completely outside
circle D. This means that the condition a > R + r holds.

In this case, we have solutions

cos(θn/2) = cn(qn + φ), sin(θn/2) = (−1)nsn(qn + φ), (2.15)

where modulus k is given by the same expression (1.7) (note that k2 < 1 for a > R) and

dn(q; k) = a − R

a + R
.

There are two limiting cases of this solution. In the first case, we have a = R + r; this means
that two circles touch one another. The modulus becomes k = 1 and the solution is

cos(θn/2) = 1/ cosh(qn + φ), sin(θn/2) = (−1)n tanh(qn + φ)

with cosh(q) = (2R + r)/r . Another limiting case corresponds to the inequality a � R, r .
This means that circle C is ‘removed to infinity’. Then the modulus k2 � 1 and hence the
solution becomes trigonometrical:

cos(θn/2) = cos(qn + φ), sin(θn/2) = (−1)n sin(qn + φ) (2.16)

with cos(q) = r/a � 1. This means that q is a very small parameter and the solution is
oscillating very slowly near the initial position.

If a � R but r/a = p < 1 is finite, then we have k = 0, i.e. again trigonometric solution
(2.16) but now cos(q) = p, i.e. the parameter q is a finite. In another limiting case a � r but
R/a = p, we have k2 = 4p/(p + 1)2. Thus k2 � 1 and k2 = 1 only if a = R. For a > R

(circle C lies outside circle D) we have k2 < 1 and the solution will be presented by elliptic
functions (2.15) but with cn(q; k), i.e. q = K(k). This solution is fully degenerated: θ2n = θ0

and θ2n+1 = θ1 for n = 0, 1, . . . . Geometrically, this is obvious: one can imagine r = 0
whereas R, a are finite (a > R). Then starting from any point on circle D, we can pass only
one ‘tangent’ line to the infinitely small circle C. Thus the Poncelet process is degenerated: at
any step we pass through circle C the only tangent line intersecting circle D in the same two
points.

Finally, consider the limiting process when circle C(λ) from the linear pencil will be
close to circle D. This means that λ → 0. As was explained in the previous section under
such a process the elliptic modulus k becomes unchanged, while the parameter q tends to
zero. Hence corresponding discrete trajectory A0, A1, A2, . . . , will consist of infinitely small
elements. In the limit λ → 0, we thus obtain a system with continuous time—the simple
pendulum described by equation (2.1).

It is important to note that this process can be ‘reverted’ in the following sense. Start from
the ordinary pendulum (2.1) and take any solution, e.g. the ‘rotating’ one (2.5). ‘Discretize’
the time t replacing it by a linear grid: tn = q(n−n0), n = 0, 1, 2, 3, . . . , with some arbitrary
real parameters q, n0. We then obtain the sequence θn of points on the unit circle. These points
will be related by equation (1.1), hence such direct discretization for the simple pendulum
appears to be integrable and leads, in fact, to the Poncelet problem. This means that under

6
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discretization with an arbitrary step q we will have the property that corresponding discrete
trajectory at its every step will touch some fixed circle. Location of this circle depends on
the total energy E and on the step q of discretization. But for the fixed energy all circles
corresponding to different values of the discretization parameter q lie in the linear Jacobi
pencil (1.8). This remarkable property of the pendulum motion was first observed by J C
Maxwell in a short note [19]. (Maxwell established this property in a slightly different but
equivalent form) Therefore, it is reasonable to call this property the Maxwell property of
discrete trajectories. In fact, Maxwell was the first who discovered nontrivial discretization of
a one-dimensional mechanical system preserving the integrability property.

3. The Bertrand model and the classical XY -spin chain

In this section, we consider the Bertrand model of the Poncelet theorem and show how this
model is related to the classical Heisenberg XY-spin chain.

It is well known that the Poncelet theorem is projective invariant. This means that the
main statement of the Poncelet theorem will be true for any pair of conics obtained from the
initial pair of conics (with the closure property) by an arbitrary projective transformation.

It is also well known that two arbitrary non-intersected (in a real projective space) conics
C,D can be transformed into one of the two simplest cases:

(i) D is the unit circle and C is an arbitrary circle inside D; this is the Jacobi model;
(ii) conic D is again the unit circle and conic C is an ellipse concentric with D.

This model was considered by Bertrand [5] who obtained an alternative proof of the Poncelet
theorem (for modern treatment of the Bertrand approach see, e.g., [23, 26]).

We describe briefly the Bertrand model (for details, see [23, 26]).
We can take the equation of ellipse C in the form

x2/α2 + y2/β2 = 1, (3.1)

where 0 < β < α < 1 are semi-axis of ellipse C. Start from the point A0 with the coordinate
θ0 on the unit circle (θ = 0 corresponds to the point x = 0, y = −1, as in the Jacobi model,
with anti-clockwise agreement). Pass a straight tangent line from A0 to ellipse C, get a new
point θ1 of intersection of this line with the unit circle D and then continue the Poncelet process
obtaining points θ2, θ3, . . . .

From elementary analytic geometry one can obtain the relation between θn and θn+1:

cos(θn+1 − θn) + (α2 − β2) cos(θn+1 + θn) = α2 + β2 − 1. (3.2)

Relation (3.2) can be treated as an ‘integral’ corresponding to the Bertrand model. Shifting
n → n − 1 we obtain a nonlinear ‘equation of motion’:

tan

(
θn+1 + θn−1

2

)
= 1 + α2 − β2

1 + β2 − α2
tan(θn). (3.3)

Strictly speaking, equation (3.3) is equivalent to relation (3.2) only under the condition

sin((θn+1 − θn−1)/2) �= 0. (3.4)

But condition (3.4) obviously holds for the Bertrand model if α > 0, β > 0.
We see that formally relation (3.2) is obtained from relation (1.1) for the Jacobi model

under the substitution

θn → 2θn, a/R = α2 − β2, r/R = α2 + β2 − 1.

Hence we can present the solution

cos(θn) = cn(qn + φ; k), sin(θn) = sn(qn + φ; k), (3.5)

7
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where

dn(q; k) = 1 + β2 − α2

1 + α2 − β2
, cn(q; k) = α2 + β2 − 1

1 + α2 − β2
, k2 = α2 − β2

α2(1 − β2)
. (3.6)

Solution (3.5) corresponds to the case when ellipse D is located inside the unit circle C, i.e.
0 < β < α < 1.

There are two degenerated cases of this solution. If β = α then k = 0 and solution (3.5)
becomes trigonometric:

θn = qn + φ, cos q = 2a2 − 1. (3.7)

The geometrical meaning of this solution is obvious: if β = α then the inner ellipse becomes
a concentric circle with radius a < 1.

Another limiting case appears when α → 1. In this case k → 1 as seen from (3.6).
Corresponding solution (3.5) becomes hyperbolic:

cos(θn) = 1/ cosh(qn + φ), sin(θn) = tanh(qn + φ), cosh(q) = 2 − b2

b2
. (3.8)

The geometrical meaning of this solution is also obvious: condition a = 1 means that the inner
ellipse touches the unit circle in two points ψ1,2 = ±π/2. All possible motions of the Poncelet
process in this case are restricted by either the upper or the bottom semicircle. Solution (3.8)
corresponds to the bottom semicircle (solution for the upper semicircle is obtained from (3.8)
by inversion θn → π + θn). Points ψ1,2 are limiting points of the Poncelet process, e.g., for
n → ∞ we have θn → π/2.

Of course, it is possible to consider other possibilities, when ellipse C is not located purely
inside of the unit circle D. This means that α > 1, i.e., there are four intersection real points
for the two conics D and C. The case β > 1 and α > 1 has no geometrical meaning because
in these cases (the unit circle D is located inside of ellipse C) all tangent points are imaginary.

Thus we have only one more type of solutions corresponding to the choice of parameters,
0 < β < 1 < α. In this case, we have oscillating solutions

cos(θn) = dn(qn + φ; k), sin(θn) = ksn(qn + φ; k), (3.9)

where

cn(q; k) = 1 + β2 − α2

1 + α2 − β2
, dn(q; k) = α2 + β2 − 1

1 + α2 − β2
, k2 = α2(1 − β2)

α2 − β2
. (3.10)

Geometrically, the Poncelet process is restricted by one of two symmetric arcs,upper or bottom,
boundary points of which are the intersection points of the two conics. The limiting angles
(±ψ) of these arcs are found as

sin(ψ) = k = α

√
1 − β2

α2 − β2
.

The Bertrand model of the Poncelet process has an interesting application in the theory
of integrable magnetic chains. Consider the so-called classical Heisenberg XY -chain which
is a set of N + 1 two-dimensional vectors— ‘spins’—Rn, n = 0, 1, . . . , N , with components
Rn = (Xn, Yn). We assume that these vectors belong to a unit circle, i.e.

R2
n = X2

n + Y 2
n = 1. (3.11)

Each vector Rn is assumed to ‘interact’ with its nearest neighbors, i.e. with Rn±1. Energy
of this interaction is described by the Heisenberg-type expression [10]:

E = −
N−1∑
n=0

{J1XnXn+1 + J2YnYn+1}, (3.12)

8
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where J1, J2 are some fixed constants described the anisotropy of interaction. In particular,
the case J1 > 0, J2 > 0 corresponds to the so-called ferromagnetic model, and the case
J1 < 0, J2 < 0 corresponds to the anti-ferromagnetic model. The problem is in finding all
static solutions providing a local extremum of the function E. Boundary conditions may be
periodic, i.e. RN = R0, free (i.e. no restrictions are imposed) and others (for example, one can
fix initial R0 and final RN vectors). Moreover, N may be infinity; in this case we deal with the
unbounded Heisenberg chain.

Local extremes of function (3.12) are found by a standard procedure (e.g., by the Lagrange
method of constrained extremum), and the corresponding equations (static Landau–Lifshitz
equations) are [10]

J1(Xn−1 + Xn+1) = λnXn, J2(Yn−1 + Yn+1) = λnYn, (3.13)

where λn is the Lagrange multiplier needed to support the constraint (3.11).
It can easily be shown [10] that either λn = 0 for some n (in this case Rn+1 = −Rn−1) or

λn �= 0 for all n. In the second case there is an ‘integral’, i.e. the following expression,

W = J−1
1 XnXn+1 + J−1

2 YnYn+1, (3.14)

does not depend on n on the solutions of the static equations (3.13).
There are two trivial ‘homogeneous’ solutions: Xn ≡ 0 and Yn ≡ 0. These solutions are

isolated from all nontrivial solutions of equations (3.13).
In what follows, we will consider only these, ‘regular’ solutions. Conversely, if expression

(3.14) does not depend on n, we derive static equations (3.13) with λn �= 0. Thus, for the
regular case it is sufficient to restrict ourselves with studying integral (3.14) for all possible
values of the parameter W .

The crucial observation is that integral (3.14) in the XY -spin chain coincides with integral
(3.2) for the Bertrand model, if we identify vectors Rn with vertices of the Poncelet process
on the conic (unit circle) D: Xn = sin(θn), Yn = cos(θn). Correspondence of the parameters
is

J−1
1 = κ(1 + β2 − α2), J−1

2 = κ(1 + α2 − β2), W = κ(β2 + α2 − 1), (3.15)

where κ is an arbitrary nonzero parameter.
Thus all regular solutions of the XY -spin chain are equivalent to solutions of the Bertrand

model. All solutions of the Bertrand model provide a nontrivial geometric interpretation of
the solutions of the XY -chain.

In particular, all regular solutions of the XY -chain have the property: there is an ellipse,
concentric with the unit circle such that the ‘trajectory’ (i.e. sequence of straight lines defined
by the vectors Rn+1 − Rn, n = 0, 1, . . .) touches this ellipse in its every branch. This property
is not obvious a priori from solutions of the XY -chain.

We can assume that κ = 1, 0 < J2 < J1. This choice corresponds to the ferromagnetic
chain with equilibrium (i.e. with minimal energy) solution Yn = −1, Xn = 0 for all n (note
that this solution is twice degenerated: Yn = 1, Xn = 0 is also the minimal solution).

If J1 = J2, (i.e. the spin chain becomes isotropic) we have α = β, i.e. the inner ellipse
becomes a circle and we obtain trigonometric solutions (3.7). This corresponds to the well-
known fact that for the isotropic spin chain all regular solutions have the form (3.7).

Solution (3.5) of the Bertrand model corresponds to the case |W | < J−1
1 and oscillating

solution (3.9) corresponds to the case J−1
1 < W < J−1

2 .
If W = J−1

2 we obtain the solution describing the domain wall [10]. It corresponds to
solution (3.8) of the Bertrand model.

The case of closed (periodic) spin chain RN = R0 corresponds to the Poncelet N-gon in
the Bertrand model. The Poncelet theorem in this case states that there are infinitely many

9
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regular solutions of the closed XY -chain corresponding to a fixed value of the integral W .
More exactly, this means the following. Assume that there exists a solution of the periodic spin
chain with N spins corresponding to some fixed value W . We can characterize this solution by
the direction of the first spin S0. Then there are infinitely many solutions of the same periodic
spin chain with the same value W . All this solutions correspond to an arbitrary position of the
initial vector S0. Indeed, by the Poncelet theorem, in the Bertrand model all initial positions of
the point on the unit circle are admissible if the closed N-gon exists. Note that for fixed values
of the interaction parameters J1, J2 and fixed number N there are finitely many values of the
parameter W for which such a solution can exist. Indeed, according to the determinant Cayley
criterion (see, e.g., [7]), in the Bertrand model, for the given N there is a polynomial equation
for admissible values of the parameters α, β necessary and sufficient for the Poncelet N-gon
to exist. On the other hand, in the XY -model there are two independent parameters, say J2/J1

and W (clearly, we can put κ = 1 in (3.15) without loss of generality) which are equivalent to
two independent parameters α, β in the Bertrand model. Hence, there is a polynomial equation
relating parameters J2/J1 and W . Usually the ratio J2/J1 is fixed by physical conditions (the
parameters J1, J2 depend on the intrinsic properties of the XY -model). Then the admissible
values of the parameter W can be found from solving a polynomial equation with coefficients
depending on J2/J1.

We thus see that the Poncelet theorem about N-gons has a very natural interpretation in
terms of periodic solutions of the spin XY -chain.

Note that in the continuous limit the Bertrand model (or XY -model) is reduced to the
Neumann model on the circle [32] which describes a point on the circle moving under the
quadratic (oscillator) potential on the plane U(x, y) = ξ1x

2 + ξ2y
2 with generic constants

ξ1, ξ2. Equivalently, the Neumann system on the circle is described by the energy equation

θ̇2 = α0 + α1 cos(2θ), (3.16)

which can formally be obtained from the corresponding equation for the pendulum by a
substitution θ → 2θ . Note that in the Greenhill monograph such a system is called ‘quadrantal
oscillations’ [11]. Of course, explicit solutions of the Neumann system are given by the Jacobi
elliptic functions (see [11] for details).

4. Projective transformations of the unit circle

In what follows we will assume that R = 1, i.e. circle D is the unit circle. The Bertrand and
the Jacobi models of the Poncelet problem are then connected by a projective transformation
of the two-dimensional plane which preserves the unit circle x2 + y2 = 1. In this section, we
describe briefly the group of projective transformations preserving the unit circle. Of course,
this subject is well known; see, e.g., [3]; we would like to stress a striking analogy between
this group and the Lorentz group O(2, 1) which makes derivation of all needed formulae from
projective geometry transparent from the ‘relativistic’ point of view.

Indeed, the unit circle can be described as a projective curve:

x2
1 + x2

2 − x2
0 = 0, (4.1)

where we introduced the projective coordinates x = x1/x0, y = x2/x0. We can interpret
equation (4.1) as an equation of the ‘light cone’ in the Minkowski space with coordinates
x0, x1, x2. The projective transformations preserving the unit circle are linear transformations
of the coordinates x0, x1, x2 preserving equation (4.1). Equivalently, these transformations
can be interpreted as the Lorentz transformations preserving the light cone. Up to inessential
scaling transformation xi → γ xi, i = 0, 1, 2, these Lorentz transformations can be described
as the group O(2, 1) containing three elementary one-parametric subgroups:

10
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(i) simple rotations:

x0 → x0, x1 → x1 cos(φ) + x2 sin(φ), x2 → −x1 sin(φ) + x2 cos(φ),

(ii) ‘boost’ transformation leaving the coordinate x2 unchanged:

x0 → x0 cosh(χ) + x1 sinh(χ), x1 → x1 cosh(χ) + x0 sinh(χ), x2 → x2,

(iii) ‘boost’ transformation leaving the coordinate x1 unchanged:

x0 → x0 cosh(ν) + x2 sinh(ν), xx → x2 cosh(ν) + x0 sinh(ν), x1 → x1.

Returning to the Euclidean coordinated x, y we see that the transformation (i) corresponds
to a rotation of the plane by the angle θ :

x → x cos(φ) + y sin(φ), y → −x sin(φ) + y cos(φ).

‘Boost’ (ii) corresponds to the nontrivial transformation of the plane:

x → x cosh(χ) + sinh(χ)

x sinh(χ) + cosh(χ)
, y → y

x sinh(χ) + cosh(χ)
,

while boost (iii) corresponds to the projective transformation:

x → x

y sinh(ν) + cosh(ν)
, y → y cosh(ν) + sinh(ν)

y sinh(ν) + cosh(ν)
.

Note that boost (iii) (under an appropriate choice of the parameter ν) allows one to
transform the Jacobi model into the Bertrand model. Equivalently, this means that one can
find a transformation of the class (iii) which transforms an arbitrary circle inside the unit circle
D (with the center located at the axis OY) into the ellipse concentric with D (see [23] for
details).

Consider also the transformation law for points on the unit circle.
It is convenient to use the standard rational parametrization of the unit circle:

x = 1 − u2

1 + u2
, y = 2u

1 + u2
, (4.2)

where u = tan(θ/2) (in this case the angle θ = 0 corresponds to the point x = 1, y = 0 on
the unit circle).

Then it is elementary verified that under the rotation (i) the parameter u is transformed as

ũ = u + σ

1 − σu
,

where σ = tan(φ/2).
Under boost (ii) we have simple scaling transformation:

ũ = u e−χ .

Finally, under boost (iii) we have the transformation

ũ = u + τ

1 + uτ
,

where τ = tanh(ν/2). Now consider the general projective transformation (which is a
combination of elementary transformations (i)—(iii)) preserving the unit circle. It is seen that
under such a transformation we have general Möbius transformation,

ũ = au + b

cu + d
, (4.3)

of the parameter u with general real coefficients a, b, c, d.
Thus general projective transformations conserving the unit circle generate the general

Möbius group (4.3) on this circle. This observation will be useful in the following section
when we construct a generic discrete-time integrable system on the unit circle.
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5. A discrete integrable system on the unit circle which generalizes a simple pendulum

A simple pendulum is described by the Newton equation (2.1) or, equivalently, by the energy
(we put l = 1 which can also be achieved by an appropriate scaling transformation of the
time t)

E = θ̇2/2 + ω2(1 − cos θ). (5.1)

Applying an arbitrary projective transformation preserving the unit circle, we can transform a
simple pendulum to another dynamical system on the unit circle having explicit solutions in
terms of elliptic functions.

Indeed, the energy equation (5.1) in terms of the parameter u can be written as

2u̇2 = E(1 + u2)2 − 2ω2u2(1 + u2). (5.2)

Under the Möbius transform (4.3) this equation becomes

u̇2 = P4(u), (5.3)

where P4(u) is a generic polynomial of degree � 4 in the argument u. Returning to the
variable θ we obtain the equation

θ̇2 = U(θ) = α0 + α1 sin(θ) + α2 cos(θ) + β1 sin(2θ) + β2 cos(2θ), (5.4)

with arbitrary constants α0, α1, α2, β1, β2. We thus obtained a general integrable system on
the unit circle with the potential U(θ) which can be integrated in terms of elliptic functions.

In order to clarify the physical meaning of the dynamical system obtained we can rewrite
the potential function U(θ) in terms of the Cartesian coordinates x = sin θ, y = − cos θ . We
then have

U(x, y) = b1x
2 + b2y

2 + b3xy + a1x + a2y + a0 (5.5)

with arbitrary constants a1, . . . , b2 (these constants are easily related to α0, . . . , β2). The
potential function (5.5) corresponds to motion in the generic potential with all possible terms
up to second degree in the variables x, y restricted to the unit circle. The linear terms,
a1x + a2y, correspond to the uniform gravity field of an arbitrary direction. The quadratic
terms, b1x

2 + b2y
2 + b3xy, correspond to some anisotropic oscillator-like potential. If all

quadratic terms vanish (i.e. if b1 = b2 = b3 = 0) then we return to the ordinary pendulum
(with rotated equilibrium state). If all linear terms are absent (i.e. a1 = a2 = 0) we obtain the
so-called Neumann system on the unit circle [32]. Note that the ordinary Neumann system
contains only diagonal terms U(x, y) = b1x

2 + b2y
2; it is clear, however, that the term ∝ xy

can be eliminated from (5.5) by a rotation of the unit circle by an appropriate angle. We thus
see that potential function (5.5) describes a superposition of the simple pendulum and the
Neumann system on the unit circle.

Consider now the corresponding discrete-time model. Any projective transformation
sends conics to conics and straight lines to straight lines. Moreover, any tangent line to a conic
is transformed into a tangent line to a conic. Hence, the Maxwell property of the pendulum
will be preserved under an arbitrary projective transformation preserving the unit circle.

This means the following. Assume that θ(t) is a solution corresponding to the dynamical
system (5.4) with arbitrary initial conditions. Take an arbitrary real parameter h > 0 and
consider a discrete set of points θn = θ(t0 + hn), n = 0, 1, 2, . . . , on the unit circle. Then
any line passing through the points θn, θn+1 will touch a fixed conic for all n. All these conics
form a linear pencil C(λ) which can be defined by the equation D + λC = 0, where D = 0
is the equation of the unit circle and C = 0 is the equation of the corresponding fixed conic.
The parameter λ depends on the discretization step h. When h → 0 then λ → 0 and conics
C(λ) tends to the unit circle D.

12
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We can summarize this observation in

Proposition 1. The dynamical system on the unit circle with the potential function (51) admits
the same Maxwell property for ‘discretized’ trajectories as for the ordinary pendulum.

What is a discrete dynamical system describing the obtained points θn? Again it is more
convenient to deal with variables un = tan(θn/2). Then the Jacobi integral (1.1) can be
presented in the form

F(un, un+1) = (R + a + (R − a)unun+1)
2 − r2(1 + u2

n

)(
1 + u2

n+1

) = 0, (5.6)

where FJ (x, y) is a special case of general symmetric biquadratic polynomial,

F(x, y) =
2∑

i,k=0

aikx
iyk, (5.7)

with the symmetric matrix aik = aki .
Performing the generic Möbius transformation for un, un+1 we can obtain the generic

biquadratic equation F(un, un+1) = 0 starting from the Jacobi equation (5.6). Thus the
discrete dynamical system corresponding to time discretization of equation (5.4) on the unit
circle is described by the generic biquadratic equation,

F(un, un+1) =
2∑

i,k=0

aiku
i
nu

k
n+1 = 0. (5.8)

In order to derive the corresponding second-order difference equation we consider the same
biquadratic equation F(un, un−1) = 0 obtained from (5.8) by the shift n → n−1. Subtracting
these equations and assuming the condition un−1 �= un+1, we obtain the equation

un−1un+1�2(un) + (un−1 + un+1)�1(un) + �0(un) = 0, (5.9)

where �i(x), i = 0, 1, 2, are quadratic polynomials easily related to the biquadratic function
F(x, y). Equation (5.9) is linear with respect to both variables un+1 and un−1. This means
that starting from the fixed initial points u0, u1 we can determine from (5.9) uniquely step by
step all further points u2, u3, . . . . Equation (5.9) is a generalization of equation (1.2) for the
Jacobi model and (3.3) for the Bertrand model.

Discrete integrable systems of type (5.9) were intensively studied in many papers during
last 25 years. These systems are connected with rational integrable maps of the two-
dimensional plane to itself [16, 33].

Reciprocal statement is also interesting.

Proposition 2. Start from the discrete dynamical system given by (5.8). Assume that this
system has infinite families of real solutions u0, u1, u2, . . . . We also assume the condition
un+1 �= un−1 for all n = 0, 1, 2, . . . . Let us identify un with a point θn on the unit circle D
by the standard substitution un = tan(θn/2). Then all lines passing through neighbor points
θn, θn+1 will touch some conic C.

This means that our discrete system on the unit circle is equivalent to the Poncelet problem
for the unit circle D and conic C. Consider the pencil of conics C(λ) = D + λC. Then for
every 0 < λ < ∞ we will obtain a family of similar discrete dynamical system of the type

F(un, un+1; λ) =
2∑

i,k=0

aik(λ)ui
nu

k
n+1 = 0, (5.10)
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where the coefficients aik(λ) of the biquadratic function F(x, y; λ) are some functions in λ.
For λ → 0 we obtain a dynamical system (5.4) with continuous time on the circle.

As a by-product of these consideration we can obtain a generalization of another result
by Hirota concerning the discrete-time model of the anharmonic oscillator. Indeed, in the
same work [13] Hirota obtained a remarkable result: if we take a one-dimensional classical
anharmonic oscillator with the Hamiltonian

H = p2/2 + αx4 + βx2 + γ,

then the direct discretization of the motion xn = x(t0 + nh) (with an arbitrary discretization
step) leads to an integrable discrete system for variables xn. More exactly, variables xn, xn+1

are connected by a symmetric biquadratic relation F(xn, xn+1) = 0, where the function
F(x, y) is a special case of biquadratic containing only terms, x2y2, x2 + y2, xy, 1 (see
[15, 21]) for details. The reason of such integrability follows directly from our results,
because Hirota’s anharmonic oscillator is a special case of a one-dimensional system (5.3),
where the polynomial P4(x) contains only terms with even degree: P4(x) = a4x

4 + a2x
2 + a0.

Hence Hirota’s anharmonic oscillator admits mapping to the unit circle xn = tan(θn/2) leading
to the already studied integrable system (with both continued and discrete time).

But Hirota’s example admits generalization to arbitrary polynomial P4(x) of fourth degree.
So we have

Proposition 3. The generalized anharmonic oscillator of the type

ẋ2 = P4(x),

where P4(x) is an arbitrary fourth-degree polynomial, admits direct time discretization leading
to a discrete integrable system. Namely, let x(t) be an arbitrary solution of this system.
Introduce the discrete set of variables xn = x(t0 + hn) with arbitrary parameters t0, h. Then
variables xn satisfy the relation F(xn, xn+1) = 0, where F(x, y) is a generic biquadratic
curve (53). The coefficients aik of the polynomial F(x, y) depend on the coefficients of the
polynomial P4(x) and on the parameter h (but not on the parameter t0).

We give here another—more direct—proof of this proposition. It is well known [34]
that the equation ẋ2 = P4(x) has a generic solution x(t) = φ(t) expressed in terms of
the second-order elliptic function φ(t) (i.e. double-periodic meromorphic function having
exactly two poles in the fundamental parallelogram of periods). The simplest examples of
the second-order elliptic functions are the Weierstrass function φ(t) = ℘(t) which has one
double pole at t = 0 and the Jacobi function φ(t) = sn(t) which has two simple poles at
t = iK ′ and t = 2K + iK ′. Vice versa, any second-order elliptic function φ(t) satisfies the
differential equation φ̇2 = P4(φ) with some polynomial P4(x) of degree 4 or 3. Assume
that φ(t) is an arbitrary second-order elliptic function. Consider two functions, x(t) = φ(t)

and y(t) = φ(t + h), where h is an arbitrary complex parameter. Then it is well known [34]
that functions x(t), y(t) satisfy the equation F(x, y) = 0, where F(x, y) is a biquadratic
polynomial. Thus for any time discretization step h we obtain the corresponding discrete
integrable system in the phase space xn, xn+1, where xn = x(t + nh), n = 0, 1, 2, . . . .

Note that the generic symmetric biquadratic equation (5.10) appears naturally in many
branches of mathematics and mathematical physics. We mention, e.g., the Baxter approach
to exactly solvable models in statistical physics where relation (5.10) is crucial in solving the
eight-vertex model [2].

Relation (5.10) appears also in the following problem from the theory of partial differential
equations. Assume that we have a closed domain U on the plane bounded by a curve �. The
so-called John algorithm allows one to recognize when the Dirichlet problem for the string
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equation in some domain U will have only unique solution. So far, explicit solutions for the
John algorithm were known only for a rectangle and an ellipse. In [7], it was shown that the
John algorithm for the domain U bounded by the generic biquadratic curve is equivalent to
the discrete-time dynamical system described by (5.10). Non-unique solvability in this case
is equivalent to the existence of periodic N-gon solutions of the Poncelet problem (see [7] for
further details).

In theory of biorthogonal rational functions (BRF) relation (5.10) is a crucial tool in
generating the so-called elliptic grids which are important in construction of families of BRF
with some good properties [28].

6. Possible generalizations and concluding remarks

In [27], Sogo proposed a discrete version of the Euler elastic problem. He introduced the
chain of small solid rods located on the plane XY . The direction of the nth rod is given by the
angle θn. The interaction energy of such a chain is chosen as

E =
∑

n

sin2((θn+1 − θn)/4) − ε sin2((θn+1 + θn)/4), (6.1)

where 0 < ε < 1 is a parameter modeling the discrete elastic properties of the chain. Then
the extremum conditions for this chain lead to the equilibrium equations

tan((θn−1 + θn+1)/4) = 1 − ε

1 + ε
tan(θn/2). (6.2)

This equation coincides with the Jacobi equation (1.2) where ε = −a/R. Under the above-
mentioned restriction for ε this means that −R < a < 0. In terms of the corresponding
discrete pendulum model this means that ω2 < 0 or, equivalently, g < 0 which corresponds
to reverting the direction of the gravity force. Thus the Sogo discrete model of an elastic rod
is essentially equivalent to the Jacobi–Poncelet model or the Hirota discrete pendulum model.
This is not surprising because it is well known that the ordinary Euler elastic model is closely
related to the ordinary pendulum [25].

Veselov [32] proposed a variational (Lagrangian) approach to the discrete-time integrable
systems with the interaction energy of the form

E =
∑

n

W(qn, qn+1), (6.3)

where W(x, y) is a function of two variables and qn a dynamical variable parametrized by the
discrete-time variable n = 0,±1,±2, . . . . Static (extremal) equations are derived from (6.3):
∂E
∂qn

= 0 or, explicitly,

∂W

∂x
(qn, qn+1) +

∂W

∂y
(qn−1, qn) = 0. (6.4)

The system is called integrable if an additional relation

F(qn, qn+1) = const (6.5)

holds for all n = 0,±1,±2, . . . , with some analytic function F(x, y). All models we
considered here are integrable in this sense. We already know that these models can be
transformed into one another by projective transformations of the plane. Nevertheless, the
Lagrangians E (6.3) corresponding to these models (say, the Jacobi and Bertrand models of
the Poncelet problem) cannot be obtained from one another by a projective transformation.
The reason is that the projective transformations do not preserve the length. Hence for every
concrete integrable model one should find the corresponding Lagrangian separately.
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Consider, e.g., that the Poncelet model can be realized in terms of two confocal ellipsis
[32]. This model is equivalent to the so-called billiard model for the Poncelet problem [9, 30].
In this model, the two conics C and D are chosen as confocal ellipses. The boundary of ellipse
D is considered as a perfect billiard. This means that a mechanical particle moves without
interaction inside ellipse D (i.e. its trajectory is a piecewise straight line) and reflects by the
mirror law from its boundary. Then it can easily be shown that such trajectory will be tangent
to a second ellipse C which is confocal with ellipse D. This gives another simple mechanical
model for the Poncelet theorem. For details see, e.g., [9, 30, 32]. (The authors are grateful
to the referee for drawing their attention to the recent book [9]) In this model the Lagrangian
coincides with the total length of the discrete trajectory [32]:

E =
∑

n

|rn − rn+1|.

Indeed, it is well known that in this model the geometric length of corresponding Poncelet
polygons possesses nice extremal properties [20]. On the other hand, the Lagrangian for
the Bertrand model (or, equivalently, spin XY -chain) is given by expression (3.12) having
no relation with the length of vectors. The problem of construction of the Lagrangian
corresponding to the given integrable discrete-time model remains an interesting open problem.

Another open problem is the extension of the Maxwell property to three-dimensional
potentials (either free or restricted by a sphere or a more general surface). For non-oscillator
potentials in the free space, the time discretization procedure is a nontrivial problem. For
example, for the Kepler problem one first needs to perform the so-called regularization
procedure, passing to a new time depending on the coordinates of the moving particle (see
[22] for details). A general discussion concerning the discretization procedure in classical
mechanics can be found in [29].

We can define the Maxwell caustic as follows. Assume that a trajectory r(t) of a particle
in some potential is a curve �. The curve � may be either as a result of a motion in some
potential on the Euclidean plane (e.g. the Kepler ellipse in the Newtonian potential) or a
prescribed constraint (e.g. pendulum motion on the unit circle). Perform time discretization
with the step h, i.e. consider the discrete set of vectors rn = r(t0 + hn), where t0 (the initial
value of time) is a fixed parameter. Then the Maxwell caustic Mh is a curve such that every
straight line rn+1 − rn touches the curve Mh. Of course, the Maxwell caustic depends on the
discretization parameter h, and Mh → � if h → 0. We say that the motion possesses the
Maxwell property if the set of curves Mh for all h can be described as a linear pencil, i.e.
every Maxwell caustic can be presented in the form

Mh = � + λ(h)Mh0,

where h0 is a fixed parameter and λ(h) is a scalar continuous function of h such that λ(0) = 0.
Clearly, if the Maxwell property holds then the basic parameter h0 can be chosen arbitrarily
from all admissible set h.

We already know that the Maxwell property holds for the simple pendulum and, more
generally, for the dynamical system on the unit circle described by the potential (5.5). In all
these cases the Maxwell property is related to the Poncelet problem, i.e. the set of the Maxwell
caustics is a linear pencil of conics.

Note that for elastic billiards restricted by a closed curve D one can introduce caustics by
the similar definition [9, 30]: a caustic C of a plane billiard is a curve such that if a billiard
trajectory is tangent to it, then it remains tangent to it after every reflection. For elastic billiards
it is assumed that trajectory is a set of straight lines satisfying the mirror law: the angle of
incidence with D equals the angle of reflection. We say that the billiard caustics C satisfy the
Maxwell property if they all belong to the same linear pencil. This pencil will include the
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billiard curve D, of course. It is well known that all billiard caustics inside the elliptic billiard
are confocal ellipses [30], and hence they satisfy the Maxwell property.

The open problem is to describe all two-dimensional (plane) motions having the Maxwell
property. In particular, it would be interesting to classify all plane billiards with this property.

We can propose two conjectures.

Conjecture 1. The potential (5.5) is the most general one admitting the Maxwell property for
the Maxwell caustics in the unit circle.

Conjecture 2. The elliptic billiards are the only ones admitting the Maxwell property for
billiard caustics.

Another interesting problem is how to generalize the Maxwell property to three-
dimensional motions. We mention an interesting approach to the explicit time discretization
of the Euler top proposed by Hirota and Kimura [14] and developed further in [24].

Finally, note that pencils of conics appear naturally in theory of the Yang–Baxter maps
and multi-dimensional integrable billiards [1, 8].
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